Definitions | t T, x:A B(x), x:A. B(x), AbsInterface(A), s = t, x:A B(x), x:A. B(x), Type, ES, E, P  Q, P  Q, b, X(e), f(a), x.A(x), es-p-le-pred(es;P), , P & Q, P   Q, , left + right, let x,y = A in B(x;y), t.1, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , e  X, {x:A| B(x)} , E(X), a:A fp B(a), strong-subtype(A;B), EqDecider(T), Unit, IdLnk, Id, EOrderAxioms(E; pred?; info), EState(T), Knd,  x. t(x),  x,y. t(x;y), kindcase(k; a.f(a); l,t.g(l;t) ), Msg(M), type List, , , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r s, constant_function(f;A;B), Top, ff, inr x , tt, inl x , False, True, A c B, es-interface-le-pred-bool, loc(e), kind(e), SWellFounded(R(x;y)), pred!(e;e'), Void, x:A.B(x), S T, suptype(S; T), first(e), A, <a, b>, pred(e), es-local-le-pred{i:l}(es;P) |